Quiz: Quadratic Equations – Formula Method on November 20, 2025 Get link Facebook X Pinterest Email Other Apps Quiz: Quadratic Equations – Formula Method 🧠 Quiz: Quadratic Equations – Formula Method 1. Solve \(x^2 - 3x - 4 = 0\) using the formula method. \(x = 4, -1\) \(x = -4, 1\) \(x = 2, -2\) \(x = 3, -3\) 2. Solve \(2x^2 + 5x - 3 = 0\) using the quadratic formula. \(x = \frac{-5 \pm \sqrt{49}}{4}\) \(x = \frac{-5 \pm \sqrt{25}}{4}\) \(x = \frac{-5 \pm \sqrt{9}}{4}\) \(x = \frac{-5 \pm \sqrt{1}}{4}\) 3. The discriminant of \(x^2 + 2x + 5 = 0\) is: -16 16 4 0 4. Solve \(x^2 - 2x - 8 = 0\) using the formula method. \(x = 4, -2\) \(x = -4, 2\) \(x = 8, -1\) \(x = 2, -8\) 5. Solve \(3x^2 - 12x + 12 = 0\) using the quadratic formula. \(x = 2\) (double root) \(x = -2\) (double root) \(x = 1, 3\) \(x = -1, -3\) 6. Which part of the quadratic formula determines the nature of the roots? Numerator Denominator Discriminant (\(b^2 - 4ac\)) Coefficient \(a\) 7. Solve \(x^2 + x - 6 = 0\) using the formula method. \(x = 2, -3\) \(x = -2, 3\) \(x = 1, -6\) \(x = -1, 6\) 8. Solve \(x^2 - 7x + 12 = 0\) using the quadratic formula. \(x = 3, 4\) \(x = -3, -4\) \(x = 2, 6\) \(x = -2, -6\) 9. The discriminant of \(2x^2 + 4x + 2 = 0\) is: 0 4 8 16 10. Solve \(x^2 + 4x + 5 = 0\) using the quadratic formula. Two real roots One real root Two complex roots No solution Submit Comments
Comments
Post a Comment