Understanding Permutation

🧮 Understanding Permutation

🔹 What is Permutation?

Permutation means arranging things in order. When we change the order, we get a different arrangement. That’s what we call a permutation.

Permutation = Arrangement

🔹 Example: Arranging A, B, C

We have three letters: A, B, and C. Let’s see how many ways we can arrange them.

Arrangement NumberArrangement
1ABC
2ACB
3BAC
4BCA
5CAB
6CBA

There are 6 different permutations.



🔹 Formula for Permutations

If we have n items and we want to arrange r of them:

P(n, r) = n! / (n - r)!

n! (n factorial) means multiplying all whole numbers from n down to 1.
Example: 3! = 3 × 2 × 1 = 6

🔹 Worked Example 1

Arrange 4 students (A, B, C, D) in a line.

P(4, 4) = 4! / (4 - 4)! = 4! / 0! = 24 / 1 = 24 ways

🔹 Worked Example 2

Arrange 3 students out of 5.

P(5, 3) = 5! / (5 - 3)! = 5 × 4 × 3 = 60 ways


No Visual Order                        No Visual Order
1 🟩🟦🟥 A, B, C                      31 🟨🟧🟩 D, E, A
2 🟩🟥🟦 A, C, B                     32 🟨🟧🟦 D, E, B
3 🟩🟦🟨 A, B, D                    33 🟨🟧🟥 D, E, C
4 🟩🟥🟨 A, C, D                    34 🟨🟧🟩 D, E, A
5 🟩🟦🟧 A, B, E        35 🟨🟧🟩 D, E, A
6 🟩🟥🟧 A, C, E        36 🟨🟧🟦 D, E, B
7 🟩🟨🟦 A, D, B         37 🟧🟩🟦 E, A, B
8 🟩🟨🟥 A, D, C         38 🟧🟩🟥 E, A, C
9 🟩🟨🟧 A, D, E         39 🟧🟩🟨 E, A, D
10 🟩🟧🟦 A, E, B         40 🟧🟩🟥 E, A, C
11 🟩🟧🟥 A, E, C        41 🟧🟩🟨 E, A, D
12 🟩🟧🟨 A, E, D        42 🟧🟦🟩 E, B, A
13 🟦🟩🟥 B, A, C        43 🟧🟦🟥 E, B, C
14 🟦🟩🟨 B, A, D        44 🟧🟦🟨 E, B, D
15 🟦🟩🟧 B, A, E       45 🟧🟥🟩 E, C, A
16 🟦🟥🟩 B, C, A      46 🟧🟥🟦 E, C, B
17 🟦🟥🟨 B, C, D      47 🟧🟥🟨 E, C, D
18 🟦🟥🟧 B, C, E       48 🟧🟨🟩 E, D, A
19 🟦🟨🟩 B, D, A       49 🟧🟨🟦 E, D, B
20 🟦🟨🟥 B, D, C        50 🟧🟨🟥 E, D, C
21 🟦🟨🟧 B, D, E        51 🟧🟨🟦 E, D, B
22 🟦🟧🟩 B, E, A        52 🟧🟨🟥 E, D, C
23 🟦🟧🟥 B, E, C        53 🟧🟨🟩 E, D, A
24 🟦🟧🟨 B, E, D        54 🟧🟥🟩 E, C, A
25 🟥🟩🟦 C, A, B        55 🟧🟥🟦 E, C, B
26 🟥🟩🟨 C, A, D        56 🟧🟦🟩 E, B, A
27 🟥🟩🟧 C, A, E        57 🟧🟦🟥 E, B, C
28 🟥🟦🟩 C, B, A        58 🟧🟦🟨 E, B, D
29 🟥🟦🟨 C, B, D        59 🟧🟩🟥 E, A, C
30 🟥🟦🟧 C, B, E        60 🟧🟩🟦 E, A, B

🔹 Real-Life Examples

  • Arranging students in a line.
  • Creating password combinations.
  • Organizing books on a shelf.
  • Different seating orders in a photo.

🔹 Practice Questions

  1. How many ways can you arrange 2 letters from A, B, C, D?
  2. How many different 3-digit numbers can be made using 1, 2, 3, and 4 (without repetition)?



🎯 Interactive Quiz: Test Your Understanding!

🎯 Interactive Quiz: Test Your Understanding!

1️⃣ How many permutations of the letters A, B, and C are there?

  1. 4
  2. 5
  3. 6
Show Answer There are 6 permutations: ABC, ACB, BAC, BCA, CAB, CBA.

2️⃣ What does 4! (4 factorial) mean?

  1. 4 + 3 + 2 + 1
  2. 4 × 3 × 2 × 1 ✅
  3. 4 ÷ 3 ÷ 2 ÷ 1
Show Answer ✅ 4! = 4 × 3 × 2 × 1 = 24

3️⃣ If n = 5 and r = 3, what is P(5,3)?

  1. 10
  2. 30
  3. 60
Show Answer ✅ P(5,3) = 5! / (5 - 3)! = 5 × 4 × 3 = 60

4️⃣ In permutation, does the order matter?

  1. Yes ✅
  2. No
Show Answer ✅ Yes, order matters in permutation.

Comments